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Abstract example, in terrain models isolines are used to highlight regions of
equal elevation. In medical MRI scans an isosurface can be used
This paper introduces two efficient algorithms that compute the to show and reconstruct the separation between bones and soft tis-
Contour Tree of a 3D scalar fiel# and its augmented version  sues. In mechanical engineering isosurfaces of CT scans are used
with the Betti numbers of each isosurface. The Contour Tree is as starting meshes object reconstruction in reverse engineering pro-
a fundamental data structure in scientific visualization that is used cesses. In molecular simulations level sets are used to determine
to preprocess the domain mesh to allow optimal computation of iso- molecular structures from single atom information. Meteorologi-
surfaces with minimal overhead storage. The Contour Tree can alsocal simulations isosurfaces are used to track the evolution of cloud
be used to build user interfaces reporting the complete topological formations.
characterization of a scalar field, as shown in Figure 1. Data ex- The domain of a scalar field is typically a geometric mesh, and
ploration time is reduced since the user understands the evolutionthe field is provided by associating each vertex in the mesh with a
of level set components with changing isovalue. The Augmented sampled scalar value. If the mesh is a simplicial complex then a
Contour Tree provides even more accurate information segmentingpiecewise linear function is naturally defined by interpolating lin-
the range space of the scalar field in portion of invariant topology. early, within each simplex, the scalar values at the vertices. If the
The exploration time for a single isosurface is also improved since mesh is a rectilinear grid then a piecewise trilinear function is natu-
its genus is known in advance. rally defined by interpolating, within each cell, the scalar values at
Our first new algorithm augments any given Contour Tree with the vertices.
the Betti numbers of all possible corresponding isocontours in lin-  The Contour Tree is a data structure that represents the relations
ear time with the size of the tree. Moreover we show how to extend petween the connected components of the level sets in a scalar field.
the scheme introduced in [3] with the Betti number computation Two connected components that merge together (as one continu-
without increasing its complexity. Thus, we improve on the time ouysly changes the isovalue) are represented as two arcs that join

complexity from our previous approach [10] fro@(m logm) to at a node of the tree. The pre-computation of the Contour Tree al-
O(nlogn +m), wherem is the number of cells and is the num-  Jows one to collect structural information relative to the isocontours
ber of vertices in the domain oF. of the field. This can be used, for example, to speed up the com-

Our second contribution is a new divide-and-conquer algorithm putation of isosurfaces by computing seed sets over the Contour
that computes the Augmented Contour Tree with improved effi- Tree data structure as in [13]. The display [1] of the Contour Tree
ciency. The approach computes the output Contour Tree by merg-provides the user with direct insight into the topology of the field
ing two intermediate Contour Trees and is independent of the in- and reduces the user interaction time necessary to “understand” the

terpolant. In this way we confine any knowledge regarding a spe- structure of the data. Figure 1 shows an example of how informa-
cific interpolant to an independent function that computes the tree tion can be extracted from the Contour Tree display.

for a single cell. We have implemented this function for the trilin- — The first efficient technique for Contour Tree computation in 2D
ear interpolant and plan to replace it with higher order interpolants \yas introduced by de Berg and van Kreveld in [5]. The algorithm
when needed. The time complexity@n + tlogn), wheret is proposed ha®)(nlogn) complexity. A simplified version, with

the number of critical points QF.. For. the first time.we can com-  the same complexity in 2D an@(m?) complexity in higher di-

pute thelgontour Tree in linear time in many practical cases where mensions, was proposed by van Kreveld et al. in [13]. This new

t = O(n ). We report the running times for a parallelimplemen-  apnr0ach is also used as a preprocessing step for an optimal iso-

tation, showing good scalability with the number of processors.  contouring algorithm. It computes a small seed set from which any

Keywords: Isosurfaces, Level Sets, Genus, Topology, Betti num- contour can be tracked in optimal running time. The approach has

bers. been improved by Tarasov and Vyalyi [12] achieviigm log m)
complexity in the 3D case by a three-pass mechanism that allows
one to resolve the different types of criticalities. Recently Carr,

1 INTRODUCTION Snoeyink and Axen [3] presented an elegant extension to any di-
mension based on a two-pass scheme that builds a Join Tree and

Scalar fields are used to represent data in different application areas Split Tree that are merged into a unique Contour Tree. The ap-
like geographic information systems, medical imaging or scientific Proach achieve®(m + nlogn) time complexity.
visualization. One fundamental limitation of the basic Contour Tree is the lack
One fundamental visualization technique for scalar fields is the Of additional information regarding the topology of the contours. In
display of level sets, that is, sets of points of equal scalar value. For high pressure chemical simulations [11], hydrogen bonds between
the atoms cannot be represented in a traditional way but can be char-
*This work was performed under the auspices of the U.S. Department of acterized by isosurfaces of potential fields. The Contour Tree pro-
Energy by University of California Lawrence Livermore National Labora-  vides important information regarding the clustering of atoms into
tory under contract No. W-7405-Eng-48. UCRL-JC-149277 molecules but fails to discriminate between linear chains and closed
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Figure 2: (a) 2D scalar field (terrain) represented as a triangular
mesh, a simplicial complex, with elevation values associated with
each vertex. The critical points are marked with colored disks:
maxima in red, saddles in green and minima in purple. A set of
representative level sets (isolines) are drawn in blue. (b) Corre-
sponding Contour Tree.

Z w = 0.2453
ggﬁ,ﬁgfEﬂ;‘?;ﬁ:}tﬁgﬁgﬁpﬁ;ﬁﬁus 3 12 rings (or more complex structures), which have different physical
ugmented Contour Tree marked by B1=6. L behaviors. In [10] we introduced the first efficient algorithm for the
T1a computation of the first three Betti numbers (number of connected
T16 components, tunnels, and voids in a surface) for all the level sets of
< Tis |[W=0238 g scalar field ifO(m log m) time.
1= In this paper we introduce an extension of the algorithm in [3]
..;i that allows one to add the Betti numbers of each contour while
maintaining the simplicity of the scheme and the efficietin +
L nlogn) time complexity. We also introduce a new divide and con-
T1a quer scheme for the computation of the Contour Tree. The basic
T10 idea is to compute Join/Split Trees by recursively combining the
T2 same trees computed for two halves of the mesh. This approach al-
osurface of genus 9 (Augmented Contour Tree marked by :'10 lows one to achieve better modularity by confining any knowledge
1=18). i® of a specific interpolant to an oracle (that is an independent external
6 . . . .
+.. function) that computes the tree for a single cell (in the Appendix
L we report the oracle for the trilinear interpolant). In our analysis of
to 01513 the scheme we show a time complexity®@fn + tlogn), wheret
w=0.

is the number of critical points in the field.

The algorithm is also easy to parallelize. Running times from
our parallel implementation specialized for rectilinear grids shows
good scalability with the number of processors.

The remainder of the paper is organized as follows. Section 2 in-
troduces the formal definition of Contour Tree and Section 3 a basic

.- - B sequential algorithm for its computation. Section 4 introduces our
algorithm for constructing the augmented Betti number information
either as a post-processing or concurrently with the construction of
the Contour Tree. Section 5 presents a new divide a conquer algo-

Figure 1: Augmented Contour Tree (ACT) and four isosurfaces _rlthm for th_e construction of the_(Augmented) Contour Tree with
(level sets) of the electron density distribution of a methane improved time complexity. Section 6 reports the performance re-
molecule. Each arc of the ACT is marked by the second Betti sults of a parallel implementation. Section 7 completes the paper
number3; (equal to twice the genus of number of handles of With concluding remarks.

the surface) of the corresponding isosurface. The four isosurfaces

are computed for isovalues = 0.2715 (a), w = 0.2453 (b),

w = 0.2389 (c) andw = 0.1513 (d). Contour (d) is shown in 2 THE CONTOUR TREE

two views. The first (standard) view shows only the outer compo- ) ] ] ] )

nent of the isosurface. The second clipped view shows the secondConsider a scalar field defined as a paiif, M), wheref is a real
component in the interior, whose presence is revealed by the doublevalued function and\ is the domain off. In the following two
intersection of the horizontal line = 0.1513 with the ACT. sections of this paper the domaM is assumed to be a simplicial
complex withn vertices andn cells. In Section 5 the domai# is
assumed for simplicity to be a rectilinear grid (the results presented




generalize directly to unstructured meshes). Within each simg

of M the functionf is the linear interpolation of its values at th

vertices (trilinear for grid cells). In other words, the fieftis com-

pletely defined by the non-empty mesh = {v4,...,v,} and the

set of scalar value$f1,..., fn}, wheref; = f(v;) andn > 0.

SinceM is connected (or processed one connected component

time) the range off is a simple closed interval = [fmin, fmaz],

wherefin = min{fi,..., fn} andfimee = max{f1,..., fn}
For simplicity of presentationM is also assumed to be home

omorphic to a3-ball. One fundamental way to study the field (b)

F is to extract its level sets. For a given scalarthe level set

L(w) is defined as the inverse image @f onto M through f: Figure 3: (a) Information provided by the standar@’ for a simple

L(w) = f~'(w). We call each connected component of the level scalar field. (b) IN the Augmented Contour Tree there may be more

set L(x) acontour. One aspect that is well understood in Morse nodes and each arc is labeled with the triglé, 51, 32) of the

theory [9] is the evolution of the homology classes of the contours Betti numbers of the corresponding family of contours. This added

of F while x changes continuously in. The points at which the information provided by thelC'T provides a better understanding

topology of a contour changes are called critical points and the cor- of the structure of each contour.

responding function values are called critical values. The critical

points are usually assumed to be isolated. This assumption can be

enforced by small (symbolic) perturbations of the function values of . An arc in theJT is extended when a node is added to a set.

I x=4.0

(1.0.1) (1.0.1

[ 2<x<4

[1.2<x<2

rx=12

[ 0<x<I.2

- x=0.0

{f1,..., fn} as discussed in Section 3. Two arcs merge in a new node in thi& when a vertex is the merge
Here this perturbation procedure is weakened by simply assum- critical point of two sets. When all the mesh vertices are processed
ing that the function value§fi, .. ., f.} are sorted from the small-  all the sets have merged together and all the arcs i/thidave

est to the largest so that< j = f; < f;. This can be enforced  converged successively to a unique root. An errpkyioN-FIND
with anO(n log n) preprocessing step. In the following of this pa- data-structures is created bBiewUF and NewSet(UF, i) creates
per the order of th¢; is used to resolve non-isolated criticalities. the new sef{i}, with reference nodé. If k£ belongs to the set
An intuitive way to characterize the Contour Tree is given by the thenFind(UF, k) returnsi in constant timeUnion(UF, 4, j) redi-
following definition: rects the pointers of all the elementgjito point to, if < has larger
TheContour Treeof F is the graph obtained by continuous con-  cardinality thary (vice versa if|i| < |j]). The functionJoinTree
traction of each contour of to a single point. Adjacent contours is detailed in the pseudocode below. Note that the line indentation
are contracted to adjacent points. Distinct contours are contracteddetermines the scope of loops.
to distinct points.
Note that the Contour Tree is not a complete Morse grapfiof ~ JoinTree(vertices, edges)
since the topological changes of a single contour are not recorded. 1 JT«— NewTree()
Figure 2 shows a 2D scalar field with the associated Contour Tree. 2 UF'« NewUF()
3 for i=0ton — 1do:

AddNode(JT, )
if IsMin(F, v;) then NewSet(UF, 1)
for each edgev;v; with j < ¢ do:
This section summarizes the main result of [3], which is an elegant 7 i’ — Find(UF, 1)
and efficient algorithm for the computation of the Contour Tree in g j' «— Find(UF, 5)
any dimension. We refer to [3] for a formal proof of the correctness g if j/ # 4’ then AddArc(JT, i, 5')
of the scheme. 10 Union(UF, i, j')

The algorithm is divided into three stages: (i) sorting of the ver- 12 return JT°
tices in the field, (ii) computing the Join TredT) and Split Tree
(ST), and (iii) merging theJT with the ST to build theCT. Each vertex; is associated with two listdpAdj, of incident edges
Sorting vertices. The vertices of the mesh are ordered by increas- (v;,v;) with j > 4, andDownAd;j of incident edgegv;, v;) with
ing function value inO(nlogn) time using any suitable standard 5 < 4. In this waylsMin(F, v;) can test in constant time ifis a
sorting technique. It is important to note that the remainder of the minimum @ownAdj is empty) and the loop on line 6 directly scans
algorithm relies on the assumption that there are no two vertices the elements oDownAd;.
with the same function value. Typical input fields do not satisfy ~ The routineSplitTree has the same structure dsinTree. The
this assumption, therefore we impose a symbolic perturbation of only differences are as follows: (i) the main loop (line 3) would
the function values by replacing the teffv;) 2 f(v;) with the scan the vertices in reverse order, (i) thetatement in line 5 would
testi 2 j. After sorting, this integer comparison solves consis- testlsMax instead ofisMin and (iii) the inner loop (line 6) would
tently the ties whery (v;) = f(v;). In the following we also use  consider the edge®;, v;) with ;7 > 4. These routines are shown
the symbol for the node ofC'T", JT or ST that corresponds to;. in [3] to have worst case time complexity 6(m + tlogt).
We denote byX T a generic reference either " or to ST'. Merging the JT with the ST In the last stage of the algorithm
Computing the JT" and the ST'. The computation of thg’T and the JT is merged with the5T to build theCT. The upper leaves
of the ST is performed in two sweeps through the data in forward of the JT and the lower leaves of th&T" are successively removed
and reverse vertex order. The Boolean functisklin(F, v;) re- from both trees and added to th&". Consequently the data struc-
turns true ifv; is a local minimum inF. The JT is built incre- ture representing théT" and theST has to support the additional
mentally with a tree data-structure supporting the obvious func- operationdDelNode(XT, i), andLeaf(XT,:). DelNode(XT,1)
tions NewTree(), AddNode(X T, ) andAddArc(XT,i,5). The removes the nodéefrom X'T" while maintaining the consistency of
JT tracks the history of th&JNION operations in th&NION-FIND XT by removing any arc¢; and replacing any pair of arag, ik
data-structure over the set of vertices in the mesh, sorted by increaswith the arcjk. The Boolean functioheaf(X T, ) tests whether
ing function value. Specifically a leaf is created and a new “up- the node; is a leaf of XT'. More specificallyLeaf(JT, ) is true
ward” arc is started i/T" for each vertex that is a local minimum  if the JT has no ar@j with j < 4, andLeaf(ST,1) is true if the

3 CONTOUR TREE COMPUTATION
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ST has no argj with j > . GetAdj(XT, ) returns a vertey

if XT contains the ar¢j. A queue data structure is used to store
pairs [Node Name, TreeName] and is managed with the func-
tions NewQ() (to create a queuelzet(Q) (to get a pair from the
queueR) andPut(Q, [X T, 1)) (to add a pair ta).

ContourTree(JT, ST)
1 Q <« NewQ()
2 CT «— NewTree()
3 fori=0ton — 1do:
4 AddNode(CT,1)
5 if Leaf(JT,%) then Put(Q, [JT,1])
6 if Leaf(ST,i) then Put(Q, [ST,])
7 while [XT,i] «+ Get(Q) do:
8 j — GetAdj(XT,1)
9 DelNode(JT,1)
10 DelNode(ST),1)
11 AddArc(CT,ij)
12 if Leaf(XT, ) then Put(Q, [XT, j])
13 return CT

One can minimize the size of t&T" by deleting any node that has
exactly degree two witbelNode. This reduction to a minimal'T’
can be done directly during the construction of tHE and of the
ST. This makes the algorithm slightly more complicated but has
the advantage of reducing the size of the intermediate storage.
This last stage of the algorithm h&§n) complexity. Overall the
algorithm for constructing th€'T" hasO(m + n log n) complexity,
sincet is never greater than.

4 BETTI NUMBERS COMPUTATION

This section introduces a modification to the funct@mntourTree

(©

(d)

Figure 4: Comparison between two level sets (isolines in blue) of
a 2D scalar field. (a) Isoline of isovalygv) — €. (b) Isoline of
isovaluef(v) + e. The difference between combinatorial structure
of the two isolines is confined within the star of simplices incident
tov. (c) Lower star of the vertex. (d) Upper star of the vertex

and the Betti numbers are restricted as follows;5()is always 1,

(i) B2 is O for surfaces with boundary (open) and is 1 for surfaces
without boundary (closed). Ong® and, are determined we can
compute the value of; using its relationship with the Euler char-
acteristicy = (o — 81 + (2. Given a triangulated surface, the Euler
numbery is defined as the number of vertices minus the number of
edges plus the number of faces. In addition to computing the Euler
number, for each contour we count the number of boundary edges
(be). In this way we can determing, by checking ifbe > 0 and

then use the Euler formula to compute = 6o + B2 — x. Ina
preliminary stage we compute, for each vertexhe information
necessary to determine the difference between the Euler number
of the level set.(f(v) + €) and the Euler number of the level set
L(f(v) —€) wheree > 0 is an arbitrarily small number (remember

that provides a more detailed characterization of the contours of athat f(v) = f(w) impliesv = w). Figure 4 shows two such level
scalar field. The output generated by the modified function is the sets for a 2D scalar field. The vertices with function value greater

Augmented Contour TreeA(C'T), as defined in [10], which has a
triple (Bo, 81, B2) of Betti numbers associated to each arc of the
tree. Thek-th Betti numbers;, of a simplicial complex is the rank
of its k-dimensional homology group. We restrict our attention to

thanf (v) are markedp and the vertices with function value smaller
than f(v) are marked>. Any simplex (edges, triangles or tetrahe-
dra) containing both vertices of type and typeo give the same
contribution to the Euler numbers of the two contours and hence

level sets of 3D scalar fields, which are 2D complexes. In this case are not considered. The only simplices that are relevant are those

only the first three Betti numbers may be non-zero. Their intuitive
interpretation is as followsp, is the number of connected com-
ponents,; is the number of independent tunnels, ahdis the
number of voids enclosed by the surface.

Figure 3(a) shows the minimalT for a simple scalar field that
has one minimum at isovalue = 0. The level setf~'(0) is a

containingv and only vertices of type> or those containing and

only vertices of typeb. We call the lower star of the set of sim-
plices of the first typdv, ©, ..., ©) and the upper star the set of
simplices of the second tyde, @, . .., ®). For both stars we com-
pute the respective Euler numbédr§ andU .S (number of vertices
minus number of edges plus number of triangles minus number of

single contour coincident with the boundary of the mesh (on the tetrahedra). We also count the differenkée between the bound-
bottom left). As the isovalue is continuously increased, the level ary edges ofL(f(v) — €) andL(f(v) + €). This is summarized in

set splits into four contours at isovalue= 2 (on the middle left).

Each contour shrinks to a single point and disappears at the maxi-

mum isovaluer = 4 (on the top left). Figure 3(b) shows the mini-
mal ACT for the same scalar field. The added information allows

the following algorithm:

LUStars(vertices, edges, triangles, tetrahedra)
1fori=0ton—1do:

the user to observe that the level set at the minimum is topologically 2 LS; «— US; «+ 1

a sphereffo = 1,81 = 0, 82 = 1) which turns into a toroidal con-
tour Go = 1,41 = 2,082 = 1) atisovaluer = 1.2. The toroidal

3 Abe; —0
4 for each edge(v;, v;) with ¢ < j do:

contour then splits into four components, each being a topological 5 LS; «— LS; — 1

sphere.
In general theACT has the same structure of tli¢T" since

6 USZ — USZ -1
7 for each triangle (v;, vj,vk) With i < j < kdo:

it has the same number of non-degree-two nodes (extrema and 8 LSy, «— LSk +1
merge/split points) and the same connectivity among them. The 9 US; — US; +1

main difference is that th€'T, in its minimal form, has no nodes
of degree two. In contrast th&C'T requires degree two nodes at

the isovalues where a contour changes its topology without splitting 12

or merging. Because of these added nodes, each arc dfitieis
associated with a family of contours that are homologically equiv-

10
11

if (vi,v;,vk) is a boundary triangle then:

Abek — Abek -1

Abei «— Abel —+ 1
11 for each tetrahedron (v;, vj, vk, v) With i < j < k <l do:
12 LS« LS —1

alent and hence qualified by the same set of Betti numbers. More-13 US; «— US; — 1
over, the contours associated with an arc contain no critical points 14 return (LS, U S, Abe)



From aCT that contains all the nodes we build the corresponding
ACT. We callx;; the Euler number of the contour associated with

the arcij of the C'T. For any fixedi the summatiord_ x;;, with

J < i, is the sum of the Euler numbers of the contour& of (v;) —

€) which intersect the star af;. Similarly we denote bye;; the

number of boundary edges of the contour associated with the a

ij.

We consider, at a generic nodehe relation betweeh S;, US;

NP HiPIP Rho Engine Foot
64x64x64 | 128x128x128| 256x256x110| 125x255x176
1 1.0000 1.0000 1.0000 1.0000
2 1.9754 1.9801 1.9988 1.9993
4 3.7633 3.9168 3.9445 3.8986
c8 7.4461 7.6365 7.3503 7.0672
16 13.949 15.457 14.302 12.864
32 26.465 28.460 27.132 20.797

and the Euler numbers of the contours associated with the arcs i

in some contour of.(f(v;) — €). In the same way each edge, tri-
angle and tetrahedron in the upper stawpproduces one vertex,
edge and face, respectively, in some contout Of (v; ) +¢€). Since

0
cident toi. In particular, each edge, triangle and tetrahedron in the
lower star ofv; produces one vertex, edge and face, respectively,

Table 1: Performance results for four sample data-sets. The values
given are the speedups achieved in computingdtd” on NP pro-
cessors as compared to the case NP=1. The ideal speedup would be
NP times faster.

BettiNumbers(ACT)

these two terms are the only difference between the Euler numbers 1 for each arcij of ACT do:

of L(f(vs) — ¢) and of L(f(v;) + €) we can write:

Z xij + LS; = Z xij +USi.

ijlj<i

)

ijli>i

Overall we have a set of linear equations, one for each node
of the ACT, with n — 1 unknownsy;;. To solve this system we
definen artificial variablesy; that are initially set to zero. In this
way one can rewrite the linear equations as follows:

Xi + Z xij + LS; = Z xij +US;i. 2

ijlj<i ijlj>i

A similar argument holds for the count of the boundary edges
be;; of each contour. We define an array of auxiliary varialbles
that are initially set to zero and satisfy the following equations:

Z beij.

ijlj>4

®)

bei —+ Z bei]- =+ Abel

ijlj<i

2 Boij « P — 1
3 if beij 7é 0 then ﬂgﬂ‘j — 0
4 31 Bo+ B2 — Xij

ACT Reduction. The following function,Reduce, removes all

of the non-critical points from thelC'T in order to reduce it to its
minimal form. The test is based on the critical point theorem in [2]
and can detect the critical points in constant time once the arrays
LS andU S have been computed. Note that this removal of non-
critical points can be done during the computation of th@T,
reducing the necessary intermediate storage:

Reduce(ACT)
1fori=0ton—1do:
2 fLS;«—US; <0
3 DelNode(ACT, i)

Correctness. The correctness of the routinétJStars and Bet-
tiNumbers derives directly from the definitions of the parameters
computed.

We solve the systems of linear equations defined by (2) and (3) proof. To prove the correctness @iugmentedContourTree we

with the procedurdugmentedContourTree, which incrementally
moves an ar¢j from theCT to the ACT each time the correspond-
ing value ofy;; can be determined (the functi@egree(XT, v)
returns the degree of the nodén XT'):

AugmentedContourTree(CT—with—all-nodes)
1 Q — NewQ()
2 ACT < NewTree()
3 fori=0ton—1do:

4 Xi < 0
5 bei —0
6 AddNode(ACT,1)
7 if Degree(CT,:) = 1thenPut(Q,1)
8 while ; — Get(Q) do:
9 j « GetAdj(CT,1)
10 AddArc(ACT, i, j)
11 if i<jthen § — +1 elsed — —1
12 Xij <—(5(X¢—US]'+LS]')
13 beij — (5(b€z = Abel)
14 xj—=xi+0-xij
15 bej — bej +46- beij
16 DelNode(CT,1)
17 if Degree(CT,j) = 1then Put(Q, )

18 return ACT

Note that the ‘while loop’ in line 8 oAugmentedContourTree has
the same structure of the ‘while loop’ in line 7 @ontourTree.
Therefore, one can compute directly the Euler numbgrsand
merge theJT with the ST in the same loop. The Betti numbers

show that there are two invariants that remain true at each iteration.
The invariants are the systems of equations (2) and (3). Initially
both systems are true by definition, since all fheand thebe; are

set to zero. We focus only on equation (2) since the same argument
holds for (3).

At each iteration of the while loop (line 8) a leafis selected
from the CT together with its incident ar¢j. Therefore theith
equation (2) has only one unknowg;;. x:; is computed with the
explicit formulayx;; = LS;—US;+xs, if j > 1, or with the explicit
formulay.; = US; — LS; — xs, if 7 < i. The node and the arc
17 are then removed fror@'T invalidating thejth equation of (2)
since the termy;; is no longer present. We restore its correctness
by adding the value of;; to x;, if j > i (or subtracting ifj < 7).
Thus, after each iteration th@T is reduced by an arc, while the
systems (2) and (3) remain true.

At the end of the loop the tre@T" has no arcs and all the terms
xi; andbe;; are computed. O

Complexity. The complexity of the procedudeUStars is O(m)
while the complexity ofAugmentedContourTree andBettiNum-
bers is O(n). Overall the computation of thdC'T" with the Betti
numbers remain®(m + nlogn). In comparison to the previous
O(mlogm) achieved in [10] we have to consider thatcan be
as big asO(n?) and therefore the complexity is improved from
O(n?logn) to O(n?).

5 DIVIDE AND CONQUER STRATEGY

can also be added at the same time. For completeness we report th&his section introduces a new way to compute tHE and the

function that computes the Betti numbers as a post-processing:

ST using a divide-and-conquer strategy. This divide-and-conquer



strategy relies on the possibility of dissectifg into two, nearly
equal, halves separated by a boundary of6ige®/?). This dissec-

tion can be computed for unstructured finite element meshes [8, 7]
in O(n) time. For simplicity of presentation and implementa-
tion (straightforward computation of the dissection), we restrict our
analysis to the case of scalar fieli’s= (f, M) whereM is a rec-
tilinear mesh of dimensions, x ny x n.. This is the type of mesh
that typically has the largest number of vertices (i.e., the type used
in the largest simulations or generated by high resolution MRI/CT
scanning devices). In this case the functjois defined within each

cell as the trilinear interpolation of the field values at the eight ver-
tices. In this framework we cannot use the algoritGontourTree

MergedT(JT1, JT3)
1 JT=NewTree()
2 UF =NewUF()
3 k «— MergeNodesSorted(JT1, JT2))
4 for each node: = 0to k — 1 do:

5 AddNode(JT,1)
6 if ISMin(F|am;nms, t) then NewSet(UF, i)
7 for each edgev;v; with j < i do:
8 i’ «— Find(UF, 1)
9 j «—Find(UF,j)
10 if j' # ¢ then AddArc(JT,d',5")
11 Union(UF, ', j')

since it assumes properties that are specific to a piecewise linearl2 return JT

interpolant. For example, the trilinear interpolant admits critical
points in the interior of a cell, a condition not allowed Bpn-
tourTree. Triangulating the cells of the grid is usually not an op-

Let n be the number of vertices 0¥1, and M., k be the num-
ber of nodes of/Ty, JT» andt be the number of the minima of

tion for large data-sets, especially because the same topology CaNZF| uq, A a1,. The complexity oMergedT is O(n2/3 +k+tlogt).
not be reproduced in general unless several more vertices are addegy construction, the size oft; N M is O(n2/3) and. since

to each cell of the mesh.

Our approach overcomes this problem by assuming an oracle

OracleJT(F, M) that returns theJT of F if M is a single cell.
We have implemented such an oracle for the trilinear interpolant

on a cube (see Appendix). To extend the scheme to data-sets Witk}

other types of interpolants, for example a triquadratic interpolant,
requires only to replace the functi@racleJT. OracleST(F, M)

is simply OracleJT(—F, M).

Recursive algorithm. The recursive algorithm has the same struc-

ture of a merge sort scheme with the added feature that non-critical

: ) h - ““"Reduce
vertices are removed as soon as possible. This removal provides 1 for i
an output sensitive character to the algorithm and improves both its >

time complexity and its space complexity:

RecursiveJT(F, M)

1 if Dimensions(M) = (2,2, 2) then
2 return OracleJT(F, M)

3 [M1, Ms] « Split (M)

4 JT1 < RecursivedT (F, M

5 JT> < RecursiveJT (F, M
6 JT — MergelT(JT1,JT?)
7 return Reduce(JT)

1)
2)

The functionSplit (M) divides in constant time the domain of the
mesh into two approximately equal meshet, and M. In par-
ticular, if M has size(ng, ny,n.), with n, > n, > n., then
M. has size(n},, ny,,n.) and M has size(n’,,ny, n.), where

ny = [n,/2] andng = n, + 1 — n,. Note that it is important to
split the mesh along the longest axis. In general for the following
complexity analysis it is important that for a mesh with rougkily
cells the size of the boundary is maintained of size rougfly

Tree merging. The routineMergeJT below combines the Join
Trees of the two halves of the mesh using a UnionFind data-
structure in the same way the routih@inTree computes the global
JT from the edges of the mesh. Two key differences need to be
highlighted. First,MergeJT sorts the input nodes in linear time
since JT, and JT> have their nodes already sorted. In particu-

t = O(n?/3), we can rewrite the complexity @(n>/* logn + k).
ACT Reduction. As shown in Section 4Reduce can test if a
point ¢ is non-critical simply by looking af..S; andU S;. In this
contextlsRegular performs the same combinatorial test modified
or the interpolant used b@racleJT. Note that the last call tRe-
duce should be modified to not chedglInterior, so that all of the
non-critical points are removed. Otherwise non-critical points on
the boundary of the mesh would remainAiC'T":

(ACT)

= 0tondo:

if IsInterior(z) and IsRegular(7)
3 DelNode(ACT, i)

Complexity. To determine the complexity &ecursiveJT we an-

alyze separately the cost of dealing with the interior critical points
and the cost of dealing with the boundaries that are artificially in-
troduced the subdivision process and removeileygeJT.

We assume that is the number of cells ofM and thatSplit
partitions M into two equal halves of size/2. Therefore, the
number of levels in the recursion treeR&cursiveJT is log n.

The functionOracleJT, which takes constant time, is invoked
exactlyn times (once per cell), accounting foréyn) time com-
plexity.

As the sub-meshes are merged together boundary points become
interior points. In particular, every point is processedR®duce
in constant time. Moreover, any point that fails the tefegular
is also processed in constant timeMgrgeJT at every level of the
recursion. IfF hast critical points we spen@(n + tlogn) time
to find and process them.

To analyze the cost of dealing with the boundaries we apply
the master theorem of recursive functions reported on page 62
of [4]. The theorem allows one to determine the complexity of
a functionT'(n) on the basis of the recurrence formuldn)
2T (n/2) + f(n) and the complexity of the functiofi(n). In this
casel'(n) is the complexity of our recursive algorithm arfidh) is

lar one linear scan through the input trees sorts the nodes and athe complexity ofMergeJT with reference to the boundary points
the same time merges the duplicate nodes, which correspond toonly (the other points have already been accounted for). As dis-

vertices on the surfacdt; N Ms. This task is performed by
MergeNodesSorted, which also returns the total number of dis-
tinct nodes. SecondVlergeJT copies verbatim into/7T" the inde-
pendent portions of T; and of JT>. This is done in linear time.

cussed earlier the highest costMergeJT is due to the Union-
Find, which we have set conservatively @(n*®logn). This
means thatf(n) has complexityO(n'~) for somee and hence
T(n) = ©(n). In conclusion, the complexity dRecursiveJT is

The UnionFind data-structure is used starting at the nodes that cor-O(n + tlogn). For practical cases whetés less than linear we

respond to local minima of the scalar field restrictedvh N Mo
(Flminm,). The test for minima is performed HgMin in con-
stant time.

havet = O(n"~°), which means the overall complexity (3(n).

For the case of large data-sets it is also crucial to minimize the
cost of any auxiliary storage. Beyond linear storage in thetsofe
the outputRecursiveJT keeps a storage proportional to the bound-
ary of the mesh. Overall the auxiliary storagedét + n2/3).



Note that the analysis above applies for general unstructured
meshes since it is possible to computeCifn) time a dissection

of M with boundary of size€)(n?/?), as shown in [7, 8].

eedup of the parallel
C%touru?rge cgrreg{nati on.

100 T T

6 PRACTICAL RESULTS

This section reports some practical results from our implementa-
tion of the two algorithms discussed in Sections 4 and 5. We first
present an example of the Augmented Contour Tree of the scalar
field obtained for a simple molecular data-set (methane) that shows
surprisingly intricate topological structures. Next we compare the
timings for the computation on data-sets of five different sizes.
Methane. We consider the topological analysis of a small scalar
field computed byab initio simulation conditions for the methane 2 4 8
molecule. We have computed the'T" and displayed it using the  Figure 5: Practical speedUps obtained in the parallel implementa-
graph drawing toographviz [6]. The top portion of this graphis  tjon for four data-sets of different sizes, compared with the ideal
shown in Figure 1, along with several isosurfaces, and their cor- |inear speedup.
responding points in thelC'T. We focus on this portion of the ) ) »
data-set since it is known that the simulation becomes less reliablefor the processing of large data-sets. For instance, the auxiliary stor-
at lower densities. age is kept as low a®(n?/® + t). In contrast the original scheme
The Methane data-set, which is on a 32x32x32 rectilinear grid, can haveO(n) auxiliary storage since the union find processing
is the simplest non-trivial data-set we explored. It is a nice exam- Needs to maintain auxiliary information on a set of vertices as large
ple, since the visualization of the tree is possible by conventional as the largest isosurface in the mesh. .
means. This gives us a good way of exploring the possibilities of  In principle there seem to be no major problems preventing
using theAC'T as an interface for data understanding. We see from the application of the divide-and-conquer scheme to unstructured
the isosurfaces (b), (c) and (d) that there is useful information sum- meshes, but further investigation is necessary to verify if the same
marized in theAC'T that is not obvious from the visualization. The ~ performance benefits can be guaranteed in general.
isosurfaces (b) and (c) can be seen immediately to Bave 6 and The simple task of drawing th€7" has become a major problem.
81 = 18 respectively; therefore, their genus is respectively 3 For data-sets that we have supcessfully processed we alrgady obtain
andg = 9, given thaty = 3, /2 for closed surfaces. In the isosur- ~ trees that current graph drawing tools cannot handle. Still we plan
face (d) the initial visualization shows a single surface, whereas the to work on data-sets that are orders of magnitude larger. In such

16

i

32

ACT shows 2 distinct components. Only after adding a clipping case_s the development of interfaces that displaytiewill present
plane the second component is shown to be enclosed within the@ major challenge.

first. Performance. We have implemented in parallel the divide-
and-conquerCT algorithm on a shared memory platform. This is
done by creating two processes at each recursion that compute Joi
and Split Trees for each half of the mesh. The recursion becomes

sequential as soon as the desired number of processes is reached.[l]

Table 1 summarizes running times for four data-sets of sizes scal-

ing from thousands to millions of vertices. The speedup relative to 2]

the sequential case is reported in Figure 5, compared to the ideal
linear speedup (top line in the chart).

One can see that the speedup obtained in the parallel implemen- [3]

tation scales nearly linearly. The coarse grained subdivision in our
method is easily implemented in parallel. Each processor becomes
responsible for a connected subregion of the mesh and works com-
pletely independently of the other processes. The only communica-
tion necessary is for a child process to returnftieand ST that it
computed to its parent.

7 CONCLUSIONS

(4]

(5]

(6]

We have introduced two schemes for the computation ofA6d"

for scalar fields defined on simplicial meshes and on rectilinear
grids. The first scheme is an extension of the algorithm proposed
in [3] with the computation of the Betti numbers.

The second contribution is a divide-and-conquer scheme for rec-
tilinear grid domains. The complexity of this second scheme is
improved further taD(m + tlog n) wheret is the number of crit-
ical points in the mesh. Moreover, we demonstrate good practical
scalability of a simple parallel implementation of this algorithm.

The comparison between the two schemes is interesting even if it
applies to different classes of inputs. In particular, the divide-and-
conquer approach seems to present several advantages, especially

(7]

(8]
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Figure 6: (a) 2D bilinear function. The saddle points marked B T o—|ir® ®
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vertical linel,, have constant function value and intersect.athe © @ ©
orientation of the edges of the rectanglés B, andC' is along
growing F'. (b) Split trees ofF’ restricted to the rectangle$, B
andC'. By, is the minimum betwee,,,; andB,2.

O minimum ® saddle @® maximum

Figure 7: Possible configurations of split tree for a trilinear inter-
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Studies Princeton University Press, 1963. each tree there are one or two examples of corresponding paral-
lelepipeds. (a) One maximum. (b) Two maxima. (c) Three max-
[10] V. Pascucci. On the topology of the level sets of a scalar field. ima. (d) Four maxima. (e) Split tree with four maxima that cannot
In 12th Canadian Conference on Computational Geometry be constructed.
pages 141-144, August 2001.

[11] E. Schwegler, G. Galli, and F. Gygi. Water under pressure. | emma 1. There is exactly one saddle poinbf F' in the plane.
Physical Review Letter84(11):2429-2432, 2000.
Lemma 2. The functionF" is constant on the ling, orthogonal to
[12] S.P. Tarasov and M. N. Vyalyi. Construction of contour trees  thes and on the liné, orthogonal to the, axis, wherd,, intersects
in 3d in O(nlogn) steps. InProceedings of the Fourteenth | at the saddle poing of F.
Annual Symposium on Computational Geomepgges 68—
75, Minneapolis, June 1998. ACM. We analyze the restriction df to axis aligned rectangles. Since
F is linear along each line parallel to the coordinate axis, we
[13] M. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and can mark each edge of a square with respect to the direction of
D.R. Schikore. Contour trees and small seed sets for isosur- increasing values of'. Figure 6(a) shows the three different types
face traversal. IfProceedings of the 13th Annual Symposium  of squares that one can have with respect to the orientation of their
on Computational Geometrpages 212-220, June 1997. edges. A square of typd has each pair of opposite edges with
parallel orientation. Therefore cannot intersect, or [,. This
type of square has one maximu#y, and one minimunmA,,, for
APPENDIX F|a. A square of typeB has both pairs of opposite edges with
) . ) anti-parallel orientation. Therefor8 intersects bothi, andl,.
We consider the problem of computing the Merge and Split Trees The saddle point must be insideB because it is at the intersection
for a cgll with a trilinear |r)terpolant. Our analysis is Ilmlted 10 petweer, and,,. All four vertices of B are extrema (two maxima
the Split Tree since the Join Tree is computed symmetrically. We anq two minima) ofF|. In the third type of squar€’, one pair
show that in the 2D case there are only two possible Split Trees and ot opposite edges are parallel while the other pair are anti-parallel.

in 3D there are only four possible Split Trees. In both cases the Thys ¢ must intersect eithel, or I, and F|c has one maximum
topology of the Split Tree is completely determined by the number 5n4 one minimum.

of maxima present in the cell.

Bilinear Interpolant on a Rectangle Lemma 3. The bilinear functionF’ restrlc'ged to an axis .allgned
rectangle can have only one or two maxima. The maxima can be
Consider a bilinear functiofr : R> — R, defined analytically by located only at non-adjacent vertices.

F(x,y) = + bx + cy + d. The gradienWV F is as follows: ) .
(2,y) = azy + bw + cy g Figure 6(b) shows how the split trees Bf4 and of F'|c are

both single lines connecting the minimum to the maximum. The
_ |OF/0z| _ |ay+b split tree of F'| g has one line that connects the lower minimum to
VF = OF/dy| ~ |az +c|’ the saddles. At s the split tree ofF'|z bifurcates into two lines
connectings to the two maxima.
wherea, b, ¢, d are real numbers. Sincg@F'/dz and0F/dy are
!inear funcpiqns, it is not possible to havg alocal maximum.or min- Trilinear Interpolant on a Parallelepiped
imum for finite values ofr andy. ImposingVFE = 0 one finds

the unique saddle pointfor © = —c¢/a, andy = —b/a. More- We extend our analysis to the trilinear case and show how to com-
over, F' is constant along the vertical lig : © = —c/a, and the pute the shape of the split and merge trees for a cube on the basis
horizontal linel, : y = —b/a. SincedF'/dz is not a function of of the orientation of its edges and the function value of the eventual
x the restrictionF’|y—const Of F' to any line parallel to the: axis body saddle points. The analytical formulation of the trilinear inter-

has constant gradient. The gradientfff,—cons: on all the lines polantisF'(z,y, z) = axyz+bry+crz+dyz+ex+gy+hz+k,
abovel, is anti-parallel to the gradient df|y—cons: ON all the lines with gradient:

below, (see Figure 6). Similarlyj, separates the vertical lines e+by+cz+ayz

where F'|z—const has upward gradient from those with downward VEF = |g+bx+dz+azxz

gradient. h 4+ cx + dy + axy
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Figure 8: Impossible configurations that would be necessary to al-
low the construction of a Split Tree shown in Figure 7(e). (a) 3D
view. (b) projection onto they plane.

Itis easy to see that restrictirfg to any plane orthogonal to a coor-
dinate axis yields the bilinear function discussed above. Therefore,
there is no local minimum or maximum &f. SolvingVF = 0 we

find two critical points of coordinates:

_d(ae—bc)£VA

r=

c(ag—bd)£vVA

B b(ah—cd) VA
Y= a(bd—ag) 7

alcd—ah) ’

a(bc—ae)

where the term/A is either added in all expressions or subtracted
in all expressions, and = (bc — ae)(bd — ag)(cd — ah). These
critical points are both saddles (of indices 1 and 2).

Lemma 4. There are at most two critical points (both saddles) in
F

We next consider the restriction & to an axis aligned paral-
lelepipedP and mark its edges with the direction of increasiig
The restriction ofF’ to any face ofP is the bilinear interpolant dis-
cussed in the previous section, therefore facts 3 and 4 imply that
one can have maxima df|p only at its vertices. Moreover, each
face of P can have only two maxima so that the greatest number
of maxima of F'| p is four. Figure 7 shows the five distinct types of
Split Trees that can be built with up to four maxima. We show in
the following that the last type is not consistent with the topology
of the trilinear interpolant.

Theorem 1. The Split Tree ofF'|» cannot have the topology of
Figure 7(e).

Proof. Assume that the tree of Figure 7(e) is a valid split tree for
someF|p with maximaM1, M2, M3 andM4. This means that
there exists an isovalue such that the region aP with F' greater
thanw is partitioned into two connected componefts (contain-
ing M1 and M 2) and R2 (containingM 3 and M4), as shown in
Figure 8(a). Sincer1 is connected we can find a lirie that con-
nectsM1 to M2 within R1. Similarly we find a linel» that con-
nectsiM 3 to M4 within R2.

Let's call S1 the front square containing the maximaff, and
S2 the back square containing the maximaR¥ (S1 and.S2 must
be opposite faces dP). We assume, without loss of generality, that
S1 andS2 are orthogonal to the axis. We consider the parallel
projectionP along thez axis, onto thery plane. The imageX, [,
of 1, Io must intersect i’ (projection of P) because they connect
the two pairs of vertices. Their intersection poift= 11 N 15 is the
image of a rayr that is parallel to the axis and that intersects
both [, andl, within P. By construction we have thdf > w
for ¢ = r Nl and forgz = r N l;. Moreover, sinceR1 is not
connected withR2, there must be a point on r, betweeny; and
g2, WhereF' < w. Along r the value ofF' first decreases from

F(q1) to F(q), and then increases frofi(q) to F'(¢g2). Butin a
trilinear function the value of’ must be monotonic along any line
parallel to an orthogonal axis. Thus we have a contradiction, since
we have shown thak’ is not monotonic along, which is parallel

to thez axis. O

In conclusion we can state the following:

Corollary 1. The topology of the Split Tree &f|p is completely
determined by the count of its local maxima.

The important practical consequence of this theorem is that we
can precompute four templates of Split Trees, and for each element
in the mesh we select the appropriate template from the orientation
of the edges. Simple numerical computations allow one to deter-
mine the specific values of the saddles where the merge occurs.



